SILIGURI INSTITUTE OF TECHNOLOGY **DEPARTMENT OF BUSINESS ADMINISTRATION (MBA)** MBA (N) 1st SEM'19, 2nd INTERNAL TEST (Continuous Evaluation IV)

Paper Name: QUANTITA	Code: MB 106								
Full Marks: 30		[CDUI		nora	tions	Doco	arel	Time: 1 Hour
01 Anowonall Quantian	a (CO1)	l	GRUU	P A (U	pera	LIOIIS	Rese	arci	$(2 \times 1 - 2)$
(i) A transportation	s(COI) problem b	ovind	mvn	otruc	turo T	vill r	acult	9 no	$(5 \times 1 = 5)$
independent allocations is	S S	aving	птхп	struc	luie	WIII I	esuit	a nu	on-degenerate solution in total number of
(a) m + n - 1	(b)	mn		(c)	m - n -	+1 (d) m -	+ n +	1
(ii) In Simplex method	(1)	Varia	ables ai	re adde	ed in ca	ase of	'equa	lity ((=) type constraint'
(a) Slack	(b)	Artific	al	(c)	Surp	olus		(d)) None of these
(iii) Every LPP is asso	ciated wit	n anotl	her LPI	P is call	led —				
(a) Primal	(b)	Dual		(c) No	on line	ar	(d)	Non	e of these
Q2. Answer any two from	n the follo	wing ((CO3)						$(3 \times 2 = 6)$
(a) Find the Optimal As	signment	schedu	le of fo	ollowin	lg mac	hine 8	3 job a	alloc	ation problem
		J1	J2	J3	J	4	J5	7	
	M1	9	11	15	1	0	11		
	M2	12	9		1	0	9		
	M3		11	14	1	1	7	-	
	<u>M4</u>	14 1 DD	8	12		/	8		
(b) Find the Dual of the	iollowing	LPP:		7					
	laximize Z	$= 4X_1$	$+ x_2 + 1$	/ X3					
Subject to Constrain	$11S: X_1 + 7$	x ₂ - 3X;	3 ≤ 4; 						
	5X1	$-X_2 + 2$	$X_3 \ge 12$;					
	X1 Whore all	$+ X_2 + y$	$x_3 = 10$	>0					
(c) Apply the Principal	of Domina	nce to	, a2, a3 : solve t	≥ 0 he foll(wind	dame	who	ena	w-offs are given below-
(c) hppiy the i incipal	of Domina		301VC L		J W 1118	game	WIIOS	se pa	ly onsare given below.
	ć	\mathbb{E}^{2}	17						
O3 Compulsory Find the	- Initial Ba	sic Fea	sible S	olutior	ı hv V	AM of	the fo	llow	ing Transportation Problem (CO3) (6)
Qui companor y i ma un		W1	W2	W3	W4	W4	Sup	plv	
	F1	55	30	40	50	50	4	0	
	F2	35	30	100	45	60	2	0	
	F3	40	60	95	35	30	4	0	
	Demand	25	10	20	30	15			
			GR	OOD B	(Stat	istics)		
Q4. Answer All (CO1)									$(2 \times 1 = 2)$
(i). Consider a random e	xperimen	tofthr	owing	a die. V	Vhat is	s the p	robat	oility	v of getting odd face?
(a) 1/6	(b)	2/3	C 1	• .	(c)	1/2	.1	,	(d) 0
(11). Consider the rando $(a) 1/52$	m experii	nent o	r cnoos	sing a c	ara. v	vnat 1	s the l	prop	ability of getting queen?
(a) 1/52	(U) 1/ m the foll	13 Nuind	(CO2)	:) Z/13		(a)	1		$(2 \times 2 - 6)$
(i) If X is normally dist	ihuted wi	th mee	(003)	nd etor	hrehe	devia	tion 1	5 +1	$(\Im X Z = 0)$ hen find the probability of $\mathbf{x} = 1$
(ii) Consider the randor	n exnerim	ent of	tossini	nu sidi da fair	coin	till a k	nead a	inne	ars for the first time. Let X is the number of
tosses required Find the	listrihutio	nofX	1033111	5 a 1a11	COIII	a I	icau d	ppe	are for the mottime. Let A is the number of
(iii) A system that will ei	ther oper	ate or f	àil in a	certai	n even	t mis	sion a	nd le	et p denotes the probability of the successful

operation. Eight trails are considered with the result S, F, S, S, S, F, S, S. Assuming independence of the maximum likelihood estimates of p.

Q6. Compulso	ry (CO3): The f	following	table gi	ives the	ages ar	nd blood	pressu	re of 10	women	L	

ıp	ilsory (CO3): The following table gives the ages and blood pressure of 10 women (7)										
	Age(X)	56	42	36	47	49	42	60	72	63	55
	Blood Pressure(Y)	147	125	118	128	145	140	155	160	149	150

Determine the (a) regression line of Y on X (b) regression line of X on Y (c) correlation coefficient between X and Y

And (d) Estimate the blood pressure of a women whose age is $45\,\mathrm{years}.$